

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-513701
(P2004-513701A)

(43) 公表日 平成16年5月13日(2004.5.13)

(51) Int.Cl.⁷

A 61 B 10/00

F 1

A 61 B 10/00 103 Z

テーマコード(参考)

		審査請求 未請求 予備審査請求 未請求 (全 32 頁)
(21) 出願番号	特願2002-542280 (P2002-542280)	(71) 出願人 500332814 ボストン サイエンティフィック リミテッド
(86) (22) 出願日	平成13年9月25日 (2001.9.25)	バルバドス国 セントマイケル ベイ ストリート ブッシュ ヒル ザ コーポレイイト センター
(85) 翻訳文提出日	平成14年5月27日 (2002.5.27)	(74) 代理人 100077517 弁理士 石田 敏
(86) 國際出願番号	PCT/US2001/042272	(74) 代理人 100092624 弁理士 鶴田 準一
(87) 國際公開番号	W02002/039903	(74) 代理人 100082898 弁理士 西山 雅也
(87) 國際公開日	平成14年5月23日 (2002.5.23)	(74) 代理人 100081330 弁理士 樋口 外治
(31) 優先権主張番号	60/234,931	
(32) 優先日	平成12年9月26日 (2000.9.26)	
(33) 優先権主張国	米国(US)	

最終頁に続く

(54) 【発明の名称】外科用器具のためのハンドルアセンブリ及びアセンブリの製造方法

(57) 【要約】

外科用器具は、ハンドルアセンブリと、可撓性導管と、可撓性導管内で軸方向に移動可能な少なくとも1つの制御部材とを有する。ハンドルアセンブリは、可撓性導管に結合されるように構成された本体部材を有する。アクチュエータは本体部材上で移動可能である。アクチュエータは少なくとも1つの突出部材を有する。アセンブリは、制御部材を収容するように寸法決めされた内側通路を有する補強チューブをさらに有する。補強チューブは、本体部材に対するアクチュエータの移動が補強チューブの移動を引き起こすように、少なくとも1つの突出部材に係合するように構成された少なくとも1つの屈曲部を有する。ハンドルアセンブリを製造する方法も開示されている。

【特許請求の範囲】**【請求項 1】**

可撓性導管と、該可撓性導管に対して軸方向に移動可能な少なくとも 1 つの制御部材とを有する外科用器具のためのハンドルアセンブリにおいて、

前記可撓性導管に結合されるように構成された本体部材と、

前記本体部材上で移動可能な、少なくとも 1 つの突出部材を有するアクチュエータと、

前記少なくとも 1 つの制御部材を収容するように寸法決めされた内側通路を有する補強チューブであって、前記本体部材に対する前記アクチュエータの移動が前記補強チューブの移動を引き起こすように、前記少なくとも 1 つの突出部材に係合するように構成された少なくとも 1 つの屈曲部を有する前記補強チューブと、を具備するハンドルアセンブリ。

10

【請求項 2】

前記補強チューブの内側が、前記少なくとも 1 つの屈曲部の領域に縮小断面を有し、該縮小断面が前記少なくとも 1 つの制御部材を保持するように構成される請求項 1 に記載のハンドルアセンブリ。

【請求項 3】

前記本体部材が、前記可撓性導管を部分の間に保持すべく共に接続されるように構成された前記部分を有する請求項 1 に記載のハンドルアセンブリ。

【請求項 4】

前記部分が、クリップを介して部分の上に共に接続される請求項 3 に記載のハンドルアセンブリ。

20

【請求項 5】

前記本体部材の少なくとも一部分が、前記可撓性導管の外面に係合するように構成されたリブを有する請求項 3 に記載のハンドルアセンブリ。

【請求項 6】

前記部分の各々が略 U 字状の断面を有する請求項 3 に記載のハンドルアセンブリ。

【請求項 7】

前記本体部材がスロットを有し、前記アクチュエータの部分が前記スロット内で移動するように構成される請求項 1 に記載のハンドルアセンブリ。

【請求項 8】

前記アクチュエータが、共に接続されるように構成される第 1 及び第 2 の部分を有する請求項 1 に記載のハンドルアセンブリ。

30

【請求項 9】

前記アクチュエータの第 1 及び第 2 の部分が、クリップを介して前記アクチュエータ部分の上に共に接続される請求項 8 に記載のハンドルアセンブリ。

【請求項 10】

前記アクチュエータ部分の各々が、前記少なくとも 1 つの屈曲部に係合するように構成された突出部材を有する請求項 8 に記載のハンドルアセンブリ。

【請求項 11】

前記補強チューブが、前記アクチュエータ上の複数の突出部材に係合するように構成された複数の屈曲部を有する請求項 1 に記載のハンドルアセンブリ。

40

【請求項 12】

外科用器具において、

請求項 1 のハンドルアセンブリと、

前記本体部材に結合された可撓性導管と、

前記可撓性導管内で軸方向に移動可能な少なくとも 1 つの制御部材であって、該制御部材の基礎部分が前記補強チューブを通過し、前記補強チューブに結合される少なくとも 1 つの制御部材とを具備する外科用器具。

【請求項 13】

前記可撓性導管の末端部の少なくとも 1 つのエンドエフェクタにおいて、前記制御部材の軸方向移動がエンドエフェクタの作動を引き起こすように、制御部材に連結される前記少

50

なくとも 1 つのエンドエフェクタをさらに具備する請求項 1 2 に記載の外科用器具。

【請求項 1 4】

前記外科用器具が内視鏡生検器具として構成され、また前記少なくとも 1 つのエンドエフェクタが、前記制御部材の軸方向移動に応答して互いに向かって及び互いに離れて移動するように構成された 1 対のジョーを有する請求項 1 3 に記載の外科用器具。

【請求項 1 5】

前記本体部材が親指リングを有し、前記アクチュエータがスプールの形態で構成される請求項 1 に記載のハンドルアセンブリ。

【請求項 1 6】

可撓性導管と、該可撓性導管内で軸方向に移動可能な少なくとも 1 つの制御部材とを有する外科用器具のためのハンドルアセンブリにおいて、

前記可撓性導管を部分の間に保持すべく共に接続されるように構成された前記部分を有する本体部材と、

前記本体部材上で移動可能なアクチュエータにおいて、前記本体部材に対する前記アクチュエータの移動が前記少なくとも 1 つの制御部材の移動を引き起こすように、前記少なくとも 1 つの制御部材に結合されるように構成される前記アクチュエータとを具備するハンドルアセンブリ。

【請求項 1 7】

前記本体部材の少なくとも一部分が、前記可撓性導管の外面に係合するように構成されたリブを有する請求項 1 6 に記載のハンドルアセンブリ。

【請求項 1 8】

前記部分の各々が略 U 字状の断面を有する請求項 1 6 に記載のハンドルアセンブリ。

【請求項 1 9】

前記本体部材が親指リングを有し、前記アクチュエータがスプールの形態で構成される請求項 1 6 に記載のハンドルアセンブリ。

【請求項 2 0】

ハンドルアセンブリを製造する方法において、

少なくとも 1 つの制御部材を補強チューブに配置する段階と、

前記補強チューブを曲げて前記補強チューブ内に少なくとも 1 つの屈曲部を形成する段階であって、前記少なくとも 1 つの屈曲部が前記チューブの内側断面を縮小し、これによって前記制御部材を前記補強チューブ内に保持する段階と、

本体部材に対するアクチュエータの移動が前記補強チューブと前記制御部材の両方の移動を引き起こすように、前記少なくとも 1 つの屈曲部と、前記本体部材上で移動可能である前記アクチュエータに結合された少なくとも 1 つの突出部材とを係合させる段階とを有する方法。

【請求項 2 1】

曲げの間に前記制御部材に張力を加える段階をさらに有する請求項 2 0 に記載の方法。

【請求項 2 2】

前記係合する段階が、少なくとも部分的に突出部材の周囲に前記屈曲部が巻き付けられるようにする請求項 2 0 に記載の方法。

【請求項 2 3】

ハンドルアセンブリを外科用器具の可撓性導管に接続する方法において、

本体部材と、該本体部材上で移動可能なアクチュエータとを有するハンドルアセンブリを用意する段階であって、前記本体部材が、前記可撓性導管を部分の間に保持すべく共に接続されるように構成された前記部分を有する、段階と、

前記可撓性導管を前記本体部材の部分の間に配置する段階と、

前記本体部材の部分を接続して、前記部分の間に前記可撓性導管を保持する段階とを有する方法。

【請求項 2 4】

前記接続する段階が、前記導管が前記本体部材の部分の間にある間に、前記本体部材の部 50

分をスナップ接続する段階を有する請求項23に記載の方法。

【発明の詳細な説明】

【0001】

本出願は、2000年9月26日出願の米国仮特許出願番号第60/234,931号の優先権の利益に依拠する。

【0002】

発明の背景

発明の分野

本発明は、一般的に、軸方向に移動可能な少なくとも1つの制御部材を有する外科用器具のためのハンドルアセンブリに関する。より詳しくは、本発明は、内視鏡生検器具用の近位ハンドルアセンブリに関する。

【0003】

関連技術の説明

内視鏡生検方法は、内視鏡及び内視鏡生検器具によって実行される。内視鏡生検器具は、身体通路又は空洞内に挿入するための可撓性の医療装置であり、離れた外側位置にいる外科医が、患者身体の内部部位から組織サンプルを切除して、回収することを可能にする。典型的に、生検器具は遠位端の組織サンプラと、近位端の手動アクチュエータ付きのハンドルアセンブリを有する細長い可撓性部材とを有する。

【0004】

生検組織サンプリング作業時、外科医は、患者の身体内の生検部位に内視鏡を案内する。次に、生検器具は、サンプリングすべき組織に組織サンプラが近接するまで、内視鏡を通して挿入される。外科医は、組織サンプラが生検部位から組織サンプルを引き裂くか、又は切り取って、組織サンプルを保持するように、アクチュエータを操作する。

【0005】

大部分の内視鏡生検器具は、典型的にワイヤコイルを有する可撓性導管を通して延在するワイヤのような1つ以上の制御部材を有する。各制御部材の遠位端は、組織サンプラ又は可撓性導管の遠位端に配置された他のある形態のエンドエフェクタに典型的に接続される。各制御部材の近位端は、アクチュエータの移動が制御部材の軸方向移動を引き起こし、これによって組織サンプラを作動するように、近位ハンドルアセンブリのアクチュエータに接続される。例えば、制御部材の遠位移動は組織サンプラのジョーの開口を引き起こし、また制御部材の近位移動はジョーの閉鎖を引き起こし、あるいはその逆も行われる。

【0006】

内視鏡生検器具を含む外科用器具のためのいくつかの従来のハンドルアセンブリに関する種々の欠点及び不都合がある。例えば、これらのアセンブリのあるものは、比較的高価及び/又は複雑な製造工程と共に組み立てなければならない多くの別個の構成要素を有する。従来の1つのハンドル設計では、制御部材は、もつれ防止部材、止めねじ及びアクチュエータに配置されるように構成されるクロスピンを介して、ハンドルアセンブリのアクチュエータに取り付けられる。制御部材は、もつれ防止部材を通して通過され、また止めねじがクロスピン内で締め付けられて、制御部材及びもつれ防止部材の両方をクロスピンとアクチュエータとの組合せに取り付ける。このような構成は、制御部材とアクチュエータとの効果的な取付けを提供するが、部品数が低減されるならば、より廉価となり得るであろう。

【0007】

ハンドルアセンブリの可撓性導管への取付けは、改良し得る外科用器具の他の態様である。可撓性導管をハンドルアセンブリに取り付けるために、種々の装置が使用してきた。考慮の対象には、コスト、容易な構成要素の製造、容易な組立、生検器具の予想される寿命、操作荷重及び操作者による受け入れが含まれる。外科医は、エンドエフェクタの操作の際に可撓性導管がハンドルに対し相対移動するのを許容するすべての取付け装置を甘受し得ないと認識するであろう。

【0008】

10

20

30

40

50

コイルをハンドルに取り付ける 1 つの方法は接合である。これは、使い捨て可能な生検器具には許容し得るが、オートクレーブされる器具には許容し得ない。繰り返されるオートクレーブ処理は接合線を悪化させる可能性がある。さらに、接合は、組立作業者が溶剤蒸気にさらされることについて O S H A / S H E A 問題を提起する。

【 0 0 0 9 】

他の例では、有刺クリンプバンドは可撓性導管の端部にクリンプされ、ハンドルの内孔に圧入される。有刺クリンプバンドがそれほど高価でなければ、このようなアセンブリを改良し得る。さらに、有刺クリンプバンドをハンドルに圧入することは、ハンドル内に容認できないほど大きな引張りフープ応力を生じることがあり、最終的に割れを生じ得る。さらに、この構造は、可撓性導管の外径とハンドルの内孔との間に望ましくないほど大きなギャップを形成し、可撓性導管がハンドル内で支持されず、曲げ変位に陥りやすくなる可能性がある。

【 0 0 1 0 】

発明の概要

本発明は、関連技術の 1 つ以上の制限を選択的に除去する構造的装置と方法に関する。本出願で具現化しました説明しているように、本発明の一態様は、可撓性導管と、この可撓性導管に対して軸方向に移動可能な少なくとも 1 つの制御部材とを有する外科用器具のためのハンドルアセンブリを含む。ハンドルアセンブリは、前記可撓性導管に結合されるように構成された本体部材を含む。アクチュエータは前記本体部材上で移動可能である。前記アクチュエータは少なくとも 1 つの突出部材を有する。前記アセンブリは、前記制御部材を収容するように寸法決めされた内側通路を有する補強チューブをさらに有する。前記補強チューブは、前記本体部材に対する前記アクチュエータの移動が前記補強チューブの移動を引き起こすように、前記少なくとも 1 つの突出部材に係合するように構成された少なくとも 1 つの屈曲部を有する。

【 0 0 1 1 】

本出願で使用されているように、用語「外科用器具」は、時に外科的処置であると考えられるものに使用される器具に限定されない。特に、用語「外科用器具」は、例えば、様々な異なる身体の診断及び / 又は治療のために使用される様々な異なる形態の医療器具に関連する。

【 0 0 1 2 】

他の態様では、本発明は、可撓性導管を部分の間に保持すべく共に接続されるように構成された前記部分を有する本体部材を具備するハンドルアセンブリを含む。

【 0 0 1 3 】

さらに他の態様では、外科用器具は、ハンドルアセンブリと、可撓性導管と、この可撓性導管内で軸方向に移動可能な少なくとも 1 つの制御部材とを有する。好ましくは、少なくとも 1 つのエンドエフェクタが前記可撓性導管の遠位端にある。前記エンドエフェクタは、前記制御部材の軸方向移動が前記エンドエフェクタの作動を引き起こすように、前記制御部材に連結し得る。

【 0 0 1 4 】

さらに別の態様では、本発明はハンドルアセンブリを製造する方法を含み、本方法は、少なくとも 1 つの制御部材を補強チューブに配置する段階と、前記補強チューブを曲げて前記補強チューブ内に少なくとも 1 つの屈曲部を形成する段階であって、前記少なくとも 1 つの屈曲部が前記チューブの内側断面を縮小し、これによって前記制御部材を前記補強チューブ内に保持する段階と、本体部材に対するアクチュエータの移動が前記補強チューブと前記制御部材の両方の移動を引き起こすように、前記少なくとも 1 つの屈曲部と、前記本体部材上で移動可能である前記アクチュエータに結合された少なくとも 1 つの突出部材とを係合させる段階とを有する。

【 0 0 1 5 】

さらなる態様では、本発明は、ハンドルアセンブリを外科用器具の可撓性導管に接続する方法を含む。本方法は、本体部材と、該本体部材上で移動可能なアクチュエータとを有す

10

20

30

40

50

るハンドルアセンブリを用意する段階であって、前記本体部材が、前記可撓性導管を部分の間に保持すべく共に接続されるように構成された前記部分を有する、段階と、前記可撓性導管を前記本体部材の部分の間に配置する段階と、前記本体部材の部分を接続して、前記部分の間に前記可撓性導管を保持する段階と、を有する。

【 0 0 1 6 】

前述の一般的説明及び次の詳細な説明の両方が例示的かつ説明目的であり、また本発明を限定するものでないことが理解される。

【 0 0 1 7 】

本明細書の一部に組み込まれ、また当該部分を形成する添付図は、本発明のいくつかの例示的な実施例を例示し、また説明と共に本発明の少なくともある原理を説明するために使用される。

【 0 0 1 8 】

例示的な実施例の説明

次に、本発明の例示的な実施例について詳細に参照し、その実施例を添付図に例示する。可能な限り、同一又は同様の部分を指すために、図面全体にわたって同一の参照番号を使用する。

【 0 0 1 9 】

本発明は、一般的に、外科用器具のためのハンドルアセンブリに関する。例えば、この器具は、内視鏡生検器具のような内視鏡器具であり得る。図面に示した例示的な実施例は生検鉗子装置に関連して本出願に記述するが、本発明は、他の種々の内視鏡及び非内視鏡の外科用器具に関連して使用し得ることが理解される。

[0 0 2 0]

図1は、可撓性導管12と、導管12の近位端に接続されたハンドルアセンブリ20と、導管12の遠位端に用意された1対の顎状のエンドエフェクタ14（例えば、生検鉗子エンドエフェクタ）とを有する内視鏡生検器具10の例示的な実施例を示している。1つ以上の制御部材16（図8）は、導管12を通して延在し、又はハンドルアセンブリ20上で移動可能なアクチュエータ22に結合された近位端と、エンドエフェクタ14に結合された遠位端とを有する。例えば、アクチュエータ22の遠位移動は、制御部材16の遠位方向の移動を引き起こし、これによって、エンドエフェクタ14の遠位端が互いに分離される開位置にエンドエフェクタ14を配置することができ、またアクチュエータ22の近位移動は、制御部材16の近位方向の移動を引き起こし、これによって、エンドエフェクタ14の近位端が互いに向かって移動されて閉鎖力を印加する閉位置にエンドエフェクタ14を配置することができる。

【 0 0 2 1 】

1対のエンドエフェクタ14が顎状の形態に配設される図1の実施例に加えて、他の多くの可能なエンドエフェクタ装置がある。例えば、代替的実施例では、エンドエフェクタ装置はポリップを切り取るためのワイヤループ投げ輪のようなスネアの形態であり得る。

【 0 0 2 2 】

ハンドルアセンブリ 20 は、移動可能なアクチュエータ 22 が移動する本体部材 24 を有する。図 2 と図 3 は、器具の残部に接続される前の本体部材 24 を示している。本体部材 24 は、ユーザの親指を収容するように寸法決めされた親指リング 26 を有することが好ましい。反対側アーム部分 28a と 28b は親指リング 26 から延在する。各アーム部分 28a、28b の遠位端は、略 U 字状のチャネル 30a、30b と、クリップ 32a、32b と、保持器リッジ 34a、34b とを有する。本体部材 24 は、クリップ 32a、32b が対応するリッジ 34b、34a と係合して、かくしてアーム部分 28a、28b をそれらの遠位端において接続するように、アーム部分 28a、28b が互いに向かって曲がるのを可能にする可撓性プラスチックから製造することが好ましい。導管 12 はアーム部分 28a、28b の間に配置され、配置後にそれらは接続され、また U 字状のチャネル 30a、30b は結合して、導管 12 を収容して把持するための穴を形成する。好ましくは、この穴の内径は少なくとも導管 12 の外径よりも僅かに小さい。図 1 と図 5 は、ア-

ム部分 28a と 28b の間に保持された導管 12 と互いに接続された前記アーム部分を示している。

【0023】

図2～図4に示したように、アーム部分 28a、28b の両方の内面は、導管 12 の外面に係合するように構成された横断方向リブ 36a、36b を有し、これによって、アーム部分 28a、28b が接続しているときに本体部材 24 の導管 12 をロックする。選択的に、クリップ 32a、32b と対応するリッジ 34b、34a との係合は、接着剤のような追加材料、又は保持リングのような追加部品を必要としない弾性スナップ接続である。当然、アーム部分 28a、28b の間の他の接続が可能である。

【0024】

アーム部分 28a、28b が共に接続されるとき、図5に示した通路 39 が本体部材 24 に形成され、またスロット 38 が、図1と図5に示したように本体部材 24 に形成される。アクチュエータ 22 の内部はスロット 38 内で移動する。

【0025】

例示的な実施例では、アクチュエータ 22 は、互いに同一の当初は分離した2つの部分 23a、23b（図1と図5～図8）から形成される。（便宜のため、図5～図8は一方の部分を示しているが、部分 23a、23b のいずれかに対応する表示を有する）。部分 23a、23b の各々はクリップ 40a、40b 及びリッジ 42a、42b を有する。クリップ 40a、40b は、対応するリッジ 42b、42a と係合して、部分 23a、23b とスナップ接続部とを接続するように構成される。本体部材 24 に関して、代わりの接続構造も可能である。

【0026】

アクチュエータ部分 23a、23b は共に接続されて、本体部材 24 がアクチュエータ部分の間に位置決めされる間に、アクチュエータ 22 を形成する。これによって、アクチュエータ 22 の部分はスロット 38 の中に存在するようにされ、またアクチュエータの他の部分は本体部材 24 の周囲に延在するようにされる。アクチュエータ 22 は、スロット 38 内及び本体部材 24 の外側に沿って近位及び遠位に摺動するように許容される。アクチュエータ 22 は、比較的拡大したディスク端部を有する略スプール形態に賦形される。

【0027】

図1、図8、図9に示したように、ハンドルアセンブリは、チューブの近位端部分に形成された1つ以上の屈曲部 52a、52b を有する補強チューブ 50 をさらに有する。選択的に、チューブ 50 は、曲げによって変形されて屈曲部 52a、52b を形成できる比較的剛性の材料から形成される。チューブ内の内側通路は制御部材 16 を収容するように寸法決めされる。制御部材 16 の近位端は、屈曲部 52a、52b の領域の補強チューブ 50 の断面積の縮小によって補強チューブ 50 内に保持される。1つの例示的な保持方法では、制御部材 16 はチューブ 50 に位置決めされ、また回転する形成ピンによってチューブ 50 が曲げられている間に、張力下に置かれる。曲げにより、チューブ 50 の内部断面は屈曲部 52a、52b の領域においてより小さな寸法に変形させられ、これによって、制御部材 16 をチューブ 50 内に保持する。

【0028】

曲がった補強チューブ 50 は、部分 23a、23b が互いに接続される前にアクチュエータ部分 23a、23b の間に配置される。補強チューブ 50 は、その屈曲部 52a、52b がアクチュエータ部分 23a、23b 内部の突出部材 54a、54b の周囲を少なくとも部分的に包囲し、これによって突出部材 54a、54b に係合するように、位置決めされる。アクチュエータ部分 23a、23b を互いに接続すると、突出部材 54a、54b は、補強チューブ 50 の屈曲部 52a、52b の蛇行屈曲形状と概して対応かつ結合する蛇行通路を形成する。これによって、補強チューブ 50 及び取り付けられた制御部材 16 はアクチュエータ 22 と係合して、本体部材 24 に対するアクチュエータ 22 の近位及び遠位移動が、補強チューブ 50 及び制御部材 16 の対応する近位及び遠位移動を引き起こすようになる。図面に示した例示的な実施例では、補強チューブ 20 の柱状強度は、例え

10

20

30

40

50

ば、制御部材 16 が可動ワイヤである場合、アクチュエータ 22 の遠位移動時に制御部材の近位端部分のもつれに耐えるのに十分である。

【0029】

アクチュエータ 22 の移動時、補強チューブ 50 及び選択的に制御部材も、図 5 に示した通路 39 内を摺動して移動する。通路 39 は本体部材 24 に係合した導管に通じる。

【0030】

図 8 と図 9 に示したように、補強チューブ 20 は略 S 字状の形状で好ましくは曲がり、各屈曲部 52a、52b は約 90° の略円形の屈曲である。他の多数の曲げ形状も可能である。例えば、図 10 は、約 45° に延在する屈曲部 52c、52d を有する補強チューブを示し、また図 11 は、約 180° に延在する屈曲部 52e、52f を示している。

10

図 12 は、図 9 の S 字形よりも丸みの小さい 90° の屈曲部 52g、52h を有する他の代替的実施例を示している。異なる多くの種類の屈曲が可能であるが、各屈曲部は好ましくは約 45° ~ 約 180°、より好ましくは約 85° ~ 約 95° の範囲にある。

【0031】

本発明の他の実施例は、本出願に開示した本発明の説明と実施を考慮すれば、当業者には明白であろう。本出願に記述した説明と実施例は、単に例示的であると考慮されることが意図される。

【図面の簡単な説明】

【図 1】

本発明によるハンドルアセンブリを有する内視鏡生検器具の例示的な実施例の側面図である。

20

【図 2】

図 1 のハンドルアセンブリの本体部材の斜視図であり、組み立て前の本体部材の状態が示されている。

【図 3】

本体部材の反対側を示した図 2 と同様の図面である。

【図 4】

図 3 のライン 4 - 4 に沿って見た本体部材の 2 つの遠位端部分の一方の内面を示した図面である。

30

【図 5】

図 1 のハンドルアセンブリの部分を示した側面図であり、組み立てられた状態の本体部材と可撓性導管との取付けが行われ、アクチュエータの一方の部分は本体部材に位置決めされる。

【図 6】

図 1 のアクチュエータ部分の一方の外側斜視図である。

【図 7】

アクチュエータ部分の内部を示した図 6 と同様の内側斜視図である。

【図 8】

図 1 のアクチュエータ部分の一方の外側斜視図であり、曲がった補強チューブはアクチュエータ部分に位置決めされ、また 1 対の制御部材に取り付けられる。

40

【図 9】

図 8 の曲がった補強チューブの側面図である。

【図 10】

第 1 の代替的実施例による曲がった補強チューブの端部の側面図である。

【図 11】

曲がった補強チューブの第 2 の代替的実施例を示した図 10 と同様の図面である。

【図 12】

曲がった補強チューブの第 3 の代替的実施例を示した図 10 と同様の図面である。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
23 May 2002 (23.05.2002)

PCT

(10) International Publication Number
WO 02/39903 A2

(51) International Patent Classification: A61B 10/00 (74) Agents: GARRETT, Arthur, S. et al., Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P., 1300 I Street, N.W., Washington, DC 20005-3315 (US).

(21) International Application Number: PCT/US01/42272
(22) International Filing Date:
25 September 2001 (25.09.2001)(25) Filing Language: English
(26) Publication Language: English(30) Priority Data:
60/234,931 26 September 2000 (26.09.2000) US

(71) Applicant (for all designated States except US): SCIMED LIFE SYSTEMS, INC. [US/US]; One Scimed Place, Maple Grove, MN 55311-1566 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors: and
(75) Inventors/Applicants (for US only): WEBER, Jeffrey, S. [US/US]; 6880 SW 44th Street #205, Miami, FL 33155 (US). AGUIRRE, Gustavo [US/US]; 18710 SW 4th Street, Pembroke Pines, FL 33029 (US). ROSE, Larry [US/US]; 19930 NW 9th Drive, Pembroke Pines, FL 33029 (US). KRATSCH, Peter, K. [US/US]; 1301 NW 129 Way, Sunrise, FL 33323 (US).Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/39903 A2

(54) Title: HANDLE ASSEMBLY FOR SURGICAL INSTRUMENT AND METHOD OF MAKING THE ASSEMBLY

(57) Abstract: A surgical instrument includes a handle assembly, a flexible conduit, and at least one control member axially movable in the flexible conduit. The handle assembly includes a body member configured to be coupled to the flexible conduit. An actuator is movable on the body member. The actuator includes at least one projection member. The assembly further includes a reinforcement tube having an interior passage sized to accommodate the control member. The reinforcement tube includes a least one bend configured to engage the at least one projection member such that movement of the actuator with respect to the body member causes movement of the reinforcement tube. Methods of manufacturing the handle assembly are also disclosed.

Handle Assembly for Surgical InstrumentAnd Method of Making the Assembly

[001] The present application relies on the benefit of priority of U.S. provisional patent application No. 60/234,931, filed on September 26, 2000.

Background of the InventionField of the Invention

[002] The present invention relates generally to a handle assembly for a surgical instrument having at least one axially movable control member. More particularly, this invention relates to a proximal handle assembly for an endoscopic biopsy instrument.

Description of the Related Art

[003] Endoscopic biopsy procedures are performed with an endoscope and an endoscopic biopsy instrument. An endoscopic biopsy instrument is a flexible medical device for insertion into a body passageway or cavity that enables a surgeon at a remote external location to remove and retrieve a tissue sample from a site internal to the patient's body. The biopsy instrument typically includes an elongated flexible member having a tissue sampler at the distal end and a handle assembly with a manual actuator at the proximal end.

[004] During a biopsy tissue sampling operation, a surgeon guides the endoscope to the biopsy site within the body of the patient. The biopsy instrument is then inserted through the endoscope until the tissue sampler is proximate to the tissue to be sampled. The surgeon manipulates the actuator so that the tissue sampler tears or cuts away a sample of tissue from the biopsy site and retains the tissue sample.

[005] Most endoscopic biopsy instruments have one or more control members, such as wires, extending through a flexible conduit typically having a wire coil. A distal end of each control member is typically connected to a tissue sampler or some other form of end effector located at a distal end of the flexible conduit. A proximal end of each control member is connected to the actuator of the proximal handle assembly such that movement of the

actuator causes axial movement of the control members and thereby actuates the tissue sampler. For example, distal movement of the control members causes opening of jaws of the tissue sampler and proximal movement of the control members causes closing of the jaws, or vice versa.

[006] There are a variety of drawbacks and disadvantages associated with some conventional handle assemblies for surgical instruments including endoscopic biopsy instruments. For example, some of these assemblies have a number of separate components that must be assembled together in relatively costly and or complex manufacturing processes. In one conventional handle design, the control members are attached to the actuator of the handle assembly via an anti-kinking member, set screw, and a cross pin which is configured to be placed in the actuator. The control members are passed through the anti-kinking member and the set screw is tightened in the cross pin to attach both the control members and the anti-kinking member to the combination of the cross pin and the actuator. Although such a configuration provides an effective attachment of the control members to the actuator, it could be less expensive if the number of parts was reduced.

[007] Attachment of the handle assembly to the flexible conduit is another aspect of surgical instruments that could be improved. Various apparatuses have been used to attach the flexible conduit to the handle assembly. Considerations include cost, ease of component manufacture, ease of assembly, expected life cycle of the biopsy instrument, operational loads, and acceptance by the operator. Surgeons would find unacceptable any attachment apparatus that permits the flexible conduit to move relative to the handle during manipulation of the end effectors.

[008] One method of attaching the coil to the handle is bonding. This may be acceptable for disposable biopsy instruments, but not for instruments that are to be autoclaved. Repeated autoclaving may degrade the bondline. Furthermore, bonding raises OSHA/SHEA concerns regarding the exposure of assembly workers to solvent fumes.

[009] In another example, a barbed crimp band is crimped onto the end of the flexible conduit and press fitted into an inner bore of the handle. Such an assembly could be improved if it was less expensive. Additionally, press fitting the barbed crimp band into the handle may also result in unacceptably large tensile hoop stresses in the handle that may ultimately lead to cracks. Furthermore, this design might create an undesirably large gap between the outer diameter of the flexible conduit and the inner bore of the handle, leaving the flexible conduit unsupported within the handle and prone to bending displacements.

Brief Summary

[010] The present invention is directed to structural arrangements and methods that optionally obviate one or more of the limitations of the related art. As embodied and broadly described herein, one aspect of the invention includes a handle assembly for a surgical instrument having a flexible conduit and at least one control member axially movable with respect to the flexible conduit. The handle assembly includes a body member configured to be coupled to the flexible conduit. An actuator is movable on the body member. The actuator includes at least one projection member. The assembly further includes a reinforcement tube having an interior passage sized to accommodate the control member. The reinforcement tube includes at least one bend configured to engage the at least one projection member such that movement of the actuator with respect to the body member causes movement of the reinforcement tube.

[011] As used herein, the term "surgical instrument" is not limited to instruments used in what are sometimes considered to be surgical procedures. In particular, the term "surgical instrument" relates to a variety of different forms of medical instruments used, for example, for a variety of differing bodily diagnoses and/or treatments.

[012] In another aspect, the invention includes a handle assembly comprising a body member including portions configured to be connected together to retain the flexible conduit therebetween.

[013] In yet another aspect, the invention includes a surgical instrument including the handle assembly, a flexible conduit coupled to the body member, and at least one control member axially movable in the flexible conduit. Preferably, at least one end effector is at a distal end of the flexible conduit. The end effector could be linked to the control member such that axial movement of the control member causes activation of the end effector.

[014] In an even further aspect, the invention includes a method of making a handle assembly, the method includes placing at least one control member in a reinforcement tube, bending the reinforcement tube to form at least one bend in the reinforcement tube, the at least one bend reducing the interior cross-section of the tube and thereby retaining the control member in the reinforcement tube, and engaging the at least one bend with at least one projection member associated with an actuator movable on a body member such that movement of the actuator with respect to the body member causes movement of both the reinforcement tube and the control member.

[015] In an additional aspect, the invention includes a method of connecting a handle assembly to a flexible conduit of a surgical instrument. The method includes providing a handle assembly including a body member and an actuator movable on the body member, wherein the body member includes portions configured to be connected together to retain the flexible conduit therebetween, placing the flexible conduit between the portions of the body member, and connecting the portions of the body member together to retain the flexible conduit therebetween.

[016] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.

Brief Description of the Drawings

[017] The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several exemplary embodiments of the invention and together with the description, serve to explain at least some of the principles of the invention. In the drawings,

[018] Fig. 1 is a side view of an exemplary embodiment of an endoscopic biopsy instrument including a handle assembly according to the present invention;

[019] Fig. 2 is a perspective view of a body member of the handle assembly of Fig. 1 with the body member shown in its unassembled condition;

[020] Fig. 3 is a view similar to that of Fig. 2 showing an opposite side of the body member;

[021] Fig. 4 is a view taken along line 4-4 of Fig. 3 showing an inner face of one of the two distal end portions of the body member;

[022] Fig. 5 is a side view showing portions of the handle assembly of Fig. 1 with the body member being in the assembled condition providing attachment to a flexible conduit and with one portion of an actuator positioned on the body member;

[023] Fig. 6 is an outer side perspective view of one of the portions of the actuator of Fig. 1;

[024] Fig. 7 is an inner side perspective view similar to Fig. 6 showing the inside of the actuator portion;

[025] Fig. 8 is an inner side view of one of the portions of the actuator of Fig. 1 with a bent reinforcement tube positioned in the actuator portion and being attached to a pair of control members;

[026] Fig. 9 is a side view of the bent reinforcement tube of Fig. 8;

[027] Fig. 10 is a side view of an end portion of a bent reinforcement tube according to a first alternative embodiment;

[028] Fig. 11 is a view similar to Fig. 10 showing a second alternative embodiment of the bent reinforcement tube; and

[029] Fig. 12 is a view similar to Fig. 10 showing a third alternative embodiment of a bent reinforcement tube.

Description of the Exemplary Embodiments

[030] Reference will now be made in detail to exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

[031] The present invention generally relates to a handle assembly for a surgical instrument. For example, the instrument could be an endoscopic instrument, such as an endoscopic biopsy instrument. While the exemplary embodiment shown in the drawings is described herein in connection with a biopsy forceps device, it is understood that the invention may be used in connection with various other endoscopic and nonendoscopic surgical instruments.

[032] Fig. 1 shows an exemplary embodiment of an endoscopic biopsy instrument 10 including a flexible conduit 12, a handle assembly 20 connected to a proximal end of the conduit 12, and a pair of jaw-like end effectors 14 (e.g., biopsy forceps end effectors) provided at a distal end of the conduit 12. One or more control members 16 (Fig. 8) extend through the conduit 12 and have a proximal end coupled to a movable actuator 22 on the handle assembly 20 and a distal end coupled to the end effectors 14. For example, distal movement of the actuator 22 could cause movement of the control members 16 in the distal direction to thereby place the end effectors 14 in an open position wherein distal ends of the end effectors 14 are separated from one another; and proximal movement of the actuator 22 could cause movement of the control members 16 in the proximal direction to thereby place the end effectors 14 in a closed position wherein the distal ends of the end effectors 14 are moved toward one another to apply a closing force.

[033] In addition to the embodiment of Fig. 1 wherein a pair of end effectors 14 are arranged in a jaw-like form, there are many other possible end effector arrangements. For example, in an alternative embodiment the

end effector arrangement could be in the form of a snare, such as a wire loop lasso for shearing a polyp.

[034] The handle assembly 20 includes a body member 24 on which the movable actuator 22 moves. Figs. 2 and 3 show the body member 24 before it is connected to the remainder of the instrument. The body member 24 preferably includes a thumb ring 26 sized to accommodate the thumb of a user. Opposite arm portions 28a and 28b extend from the thumb ring 26. The distal end of each arm portion 28a, 28b includes a generally U-shaped channel 30a, 30b, clips 32a, 32b, and retainer ridges 34a, 34b. The body member 24 is preferably made of a flexible plastic permitting the arm portions 28a, 28b to be flexed toward one another so that the clips 32a, 32b become engaged with the corresponding ridges 34b, 34a, thus connecting the arm portions 28a, 28b together at their distal ends. The conduit 12 is placed between the arm portions 28a, 28b before they are connected, and the U-shaped channels 30a, 30b mate to form a bore for accommodating and gripping the conduit 12. Preferably, the inside diameter of this bore is at least slightly less than the outside diameter of the conduit 12. Figs. 1 and 5 show the arm portions 28a and 28b connected together with the conduit 12 held therebetween.

[035] As shown in Figs. 2-4, the inner faces of both of the arm portions 28a, 28b include transverse ribs 36a, 36b configured to engage the outer surface of the conduit 12 and thereby lock the conduit 12 in the body member 24 when the arm portions 28a, 28b are connected. Optionally, the engagement of the clips 32a, 32b with the corresponding ridges 34b, 34a is a resilient snap connection that does not require any additional material, such as adhesive, or additional parts, such as retaining rings. Other connections between the arm portions 28a, 28b are, of course, possible.

[036] When the arm portions 28a, 28b are connected together, a passageway 39 shown in Fig. 5 is formed in the body member 24, and a slot 38 is formed in the body member 24, as shown in Figs. 1 and 5. An inner part of the actuator 22 travels in the slot 38.

[037] In an exemplary embodiment, the actuator 22 is formed from two initially separate portions 23a, 23b (Figs. 1 and 5-8), which are identical to one another. (For convenience, Figs. 5-8 show one portion but have labels corresponding to either one of the portions 23a, 23b.) Each of the portions 23a, 23b includes clips 40a, 40b and ridges 42a, 42b. The clips 40a, 40b are configured to be engaged with corresponding ridges 42b, 42a to connect the portions 23a, 23b together with a snap connection. As with the body member 24, alternative connecting configurations are also possible.

[038] The actuator portions 23a, 23b are connected together to form the actuator 22 while the body member 24 is positioned between them. This causes part of the actuator 22 to be in the slot 38 and another part of the actuator to extend around the body member 24. The actuator 22 is permitted to slide proximally and distally within the slot 38 and along the outside of the body member 24. The actuator 22 is generally shaped in the form of a spool having relatively enlarged disc ends.

[039] As shown in Figs. 1, 8, and 9, the handle assembly further includes a reinforcement tube 50 having one or more bends 52a, 52b formed in the tube's proximal end portion. Optionally, the tube 50 is formed of a relatively rigid material that is capable of being deformed by bending to form the bends 52a, 52b. An interior passage in the tube is sized to accommodate the control members 16. A proximal end of the control members 16 is retained in the reinforcement tube 50 via the reduced cross-sectional area of the reinforcement tube 50 in the region of the bends 52a, 52b. In one exemplary retaining method, the control members 16 are positioned in the tube 50 and placed under tension while the tube 50 is being bent by a forming pin that rotates. The bending causes the interior cross-section of the tube 50 to deform to a smaller size in the region of the bends 52a, 52b and thereby retains the control members 16 within the tube 50.

[040] The bent reinforcement tube 50 is placed between the actuator portions 23a, 23b before the portions 23a, 23b are connected to one another. The tube 50 is positioned so that the bends 52a, 52b of the reinforcement

tube 50 at least partially wrap around the projection members 54a, 54b on the interior of the actuator portions 23a, 23b to thereby engage the projection members 54a, 54b. Upon connecting the actuator portions 23a, 23b to one another, the projection member 54a, 54b form a tortuous path that generally corresponds and mates with the tortuous bend shape of the bends 52a, 52b in the reinforcement tube 50. This places the reinforcement tube 50 and the attached control members 16 in engagement with the actuator 22 such that proximal and distal movement of the actuator 22 with respect to the body member 24 causes corresponding proximal and distal movement of the reinforcement tube 50 and the control members 16. In the exemplary embodiment shown in the drawings, the columnar strength of the reinforcement tube 20 is sufficient to resist kinking of the proximal end portions of the control members during distal movement of the actuator 22, for example, when the control members 16 are movable wires.

[041] During movement of the actuator 22, the reinforcement tube 50, and optionally also the control members, move in a slidible manner in the passageway 39 shown in Fig. 5. The passageway 39 leads to the conduit 12 engaged in the body member 24.

[042] As shown in Figs. 8 and 9, the reinforcement tube 20 is preferably bent in a generally S-shaped configuration with each bend 52a, 52b being a generally rounded bend of approximately 90 degrees. Numerous other bending configurations are also possible. For example, Fig. 10 shows a reinforcement tube with bends 52c, 52d extending approximately 45 degrees, and Fig. 11 shows bends 52e, 52f extending approximately 180 degrees. Fig. 12 shows another alternate embodiment having 90 degree bends 52g, 52h having less rounding than the S-shape of Fig. 9. Although many different types of bends are possible, each bend preferably ranges from approximately 45 degrees to approximately 180 degrees, and more preferably from approximately 85 degrees to approximately 95 degrees.

[043] Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the

invention disclosed herein. It is intended that the specification and embodiments described herein be considered as exemplary only.

WHAT IS CLAIMED IS:

1. A handle assembly for a surgical instrument having a flexible conduit and at least one control member axially movable with respect to the flexible conduit, the handle assembly comprising:
 - a body member configured to be coupled to the flexible conduit;
 - an actuator movable on the body member, the actuator including at least one projection member; and
 - a reinforcement tube having an interior passage sized to accommodate said at least one control member, the reinforcement tube including a least one bend configured to engage the at least one projection member such that movement of the actuator with respect to the body member causes movement of the reinforcement tube.
2. The handle assembly of claim 1, wherein an interior the reinforcement tube has a reduced cross-section in the region of the at least one bend, the reduced cross-section being configured to retain said at least one control member.
3. The handle assembly of claim 1, wherein the body member includes portions configured to be connected together to retain the flexible conduit therebetween.
4. The handle assembly of claim 3, wherein the portions are connected together via clips on the portions.
5. The handle assembly of claim 3, wherein at least one of the portions of the body member includes ribs configured to engage an outer surface of the flexible conduit.
6. The handle assemble of claim 3, wherein each of the portions has a generally U-shaped cross-section.
7. The handle assembly of claim 1, wherein the body member includes a slot and wherein a portion of the actuator is configured to move in the slot.
8. The handle assembly of claim 1, wherein the actuator includes first and second portions configured to be connected together.

9. The handle assembly of claim 8, wherein the first and second portions of the actuator are connected together via clips on the actuator portions.
10. The handle assembly of claim 8, wherein each of the portions of the actuator includes a projection member configured to engage said at least one bend.
11. The handle assembly of claim 1, wherein the reinforcement tube includes a plurality of bends configured to engage a plurality of projection members on the actuator.
12. A surgical instrument comprising:
 - the handle assembly of claim 1;
 - a flexible conduit coupled to the body member; and
 - at least one control member axially movable in the flexible conduit, a proximal end portion of the control member passing through the reinforcement tube and being coupled to the reinforcement tube.
13. The surgical instrument of claim 12, further comprising:
 - at least one end effector at a distal end of the flexible conduit, the end effector being linked to the control member such that axial movement of the control member causes activation of the end effector.
14. The surgical instrument of claim 13, wherein the surgical instrument is configured as an endoscopic biopsy instrument and wherein the at least one end effector includes a pair of jaws configured to move toward and away from one another in response to axial movement of the control member.
15. The handle assembly of claim 1, wherein the body member includes a thumb ring and the actuator is configured in the form of a spool.
16. A handle assembly for a surgical instrument having a flexible conduit and at least one control member axially movable in the flexible conduit, the handle assembly comprising:
 - a body member including portions configured to be connected together to retain the flexible conduit therebetween; and

an actuator movable on the body member, the actuator being configured to be coupled to the at least one control member such that movement of the actuator with respect to the body member causes movement of the at least one control member.

17. The handle assembly of claim 16, wherein at least one of the portions of the body member includes ribs configured to engage an outer surface of the flexible conduit.

18. The handle assembly of claim 16, wherein each of the portions has a generally U-shaped cross-section.

19. The handle assembly of claim 16, wherein the body member includes a thumb ring and the actuator is configured in the form of a spool.

20. A method of making a handle assembly, the method comprising placing at least one control member in a reinforcement tube; bending the reinforcement tube to form at least one bend in the reinforcement tube, the at least one bend reducing the interior cross-section of the tube and thereby retaining the control member in the reinforcement tube; and

engaging the at least one bend with at least one projection member associated with an actuator movable on a body member such that movement of the actuator with respect to the body member causes movement of both the reinforcement tube and the control member.

21. The method of claim 20, further comprising tensioning the control member during the bending.

22. The method of claim 20, wherein the engaging causes the bend to become wrapped at least partially around the projection member.

23. A method of connecting a handle assembly to a flexible conduit of a surgical instrument, the method comprising:

providing a handle assembly including a body member and an actuator movable on the body member, wherein the body member includes portions configured to be connected together to retain the flexible conduit therebetween;

placing the flexible conduit between the portions of the body member; and connecting the portions of the body member together to retain the flexible conduit therebetween.

24. The method of claim 23, wherein the connecting comprises snap connecting the portions of the body members together while the conduit is therebetween.

1/8

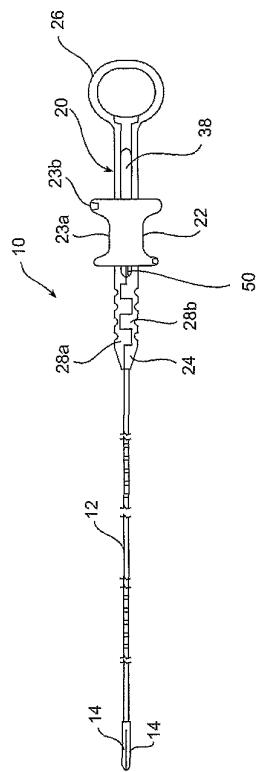


FIG. 1

2/8

FIG. 2

3/8

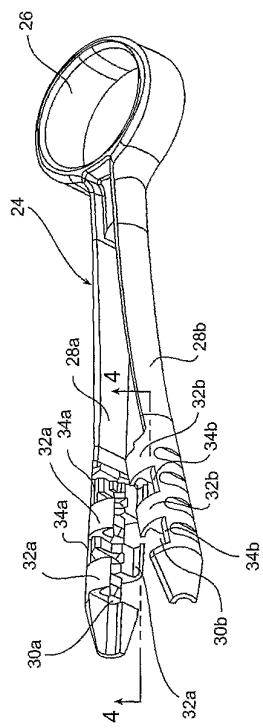


FIG. 3

4/8

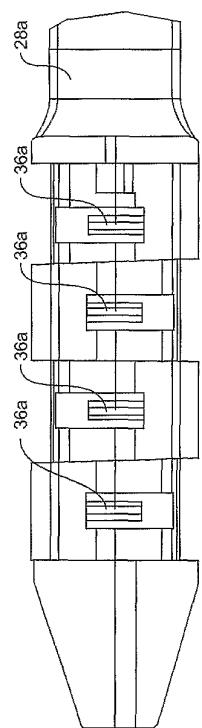


FIG. 4

5/8

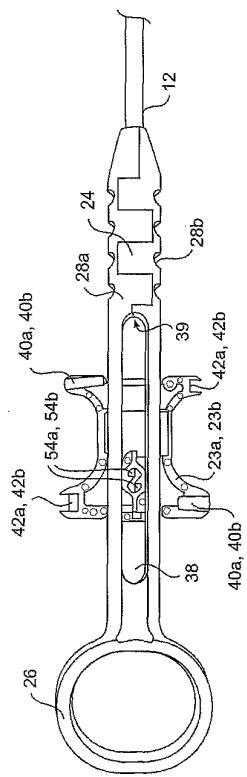
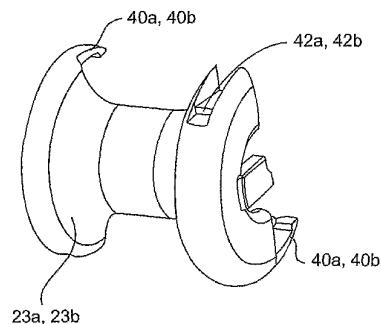
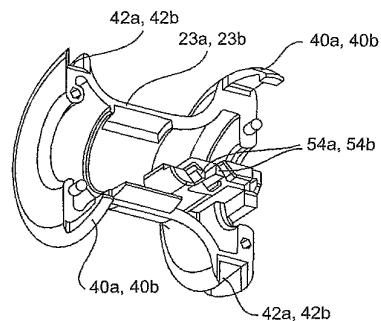
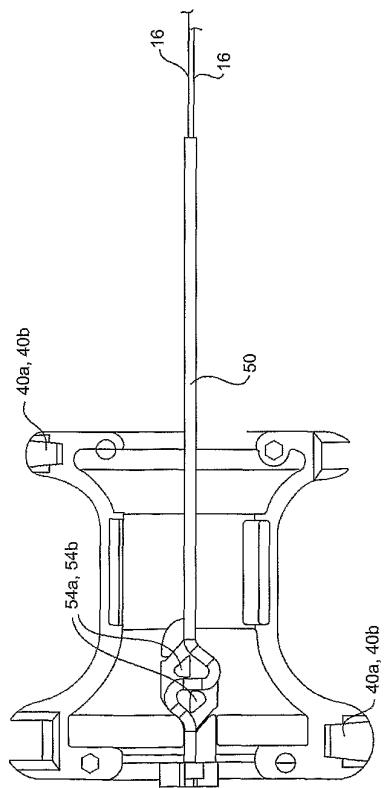
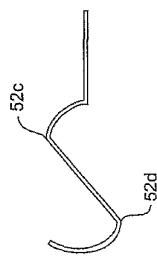
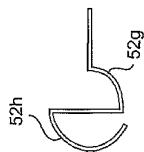




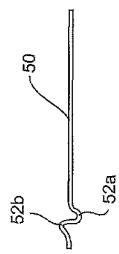
FIG. 5

6/8

FIG. 6**FIG. 7**

7/8


FIG. 8

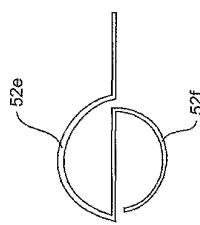

FIG. 9

FIG. 10

FIG. 9

FIG. 11

FIG. 12

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,PH,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZW

(72)発明者 ウェーバー, ジェフリー エス.

アメリカ合衆国, フロリダ 33155, マイアミ, サウスウェスト フォーティーフォース ストリート 6880, #205

(72)発明者 アギール, ガスタボ

アメリカ合衆国, フロリダ 33029, ペンブローク パインズ, サウスウェスト フォース ストリート 18710

(72)発明者 ローズ, ラリー

アメリカ合衆国, フロリダ 33029, ペンブローク パインズ, ノースウェスト ナインス ドライブ 19930

(72)発明者 クラッチ, ピーター ケー.

アメリカ合衆国, フロリダ 33323, サンライズ, ノースウェスト 129 ウェイ 130
1

专利名称(译)	用于手术器械的手柄组件和制造组件的方法		
公开(公告)号	JP2004513701A	公开(公告)日	2004-05-13
申请号	JP2002542280	申请日	2001-09-25
[标]申请(专利权)人(译)	波士顿科学有限公司		
申请(专利权)人(译)	波士顿科技有限公司		
[标]发明人	ウェーバージェフリー エス アギール ガスタボ ローズ ラリー クラッチ ピーター ケー		
发明人	ウェーバー ジェフリー エス. アギール ガスタボ ローズ ラリー クラッチ ピーター ケー.		
IPC分类号	A61B10/02 A61B10/00 A61B10/06 A61B17/00 A61B17/28		
CPC分类号	A61B10/06 A61B17/2909 A61B2017/00477 A61B2017/2911 Y10T29/49906 Y10T29/49929		
FI分类号	A61B10/00.103.Z		
代理人(译)	石田 敬 西山 雅也		
优先权	60/234931 2000-09-26 US		
其他公开文献	JP4842500B2		
外部链接	Espacenet		

摘要(译)

手术器械具有手柄组件，柔性导管和至少一个可在柔性导管内轴向移动的控制构件。手柄组件具有主体构件，该主体构件构造成联接到柔性导管。致动器可在主体构件上移动。致动器具有至少一个突出构件。该组件还包括加强管，该加强管具有尺寸适于容纳控制构件的内部通道。加强管具有至少一个弯曲部，该弯曲部构造成接合至少一个突出构件，使得致动器相对于主体构件的运动引起加强管的运动。还公开了一种制造手柄组件的方法。

(43) 公表日 平成16年5月13日(2004.5.1)		審査請求 未請求 予備審査請求 未請求 (全 32 頁)	
(51) Int. Cl. ⁷	A 61 B 10/00	F I	A 61 B 10/00 103Z テーマコード (参考)
(21) 出願番号	特願2002-542280 (P2002-542280)	(71) 出願人	500332814 ボストン サイエンティフィック リミットド
(36) (22) 出願日	平成13年9月25日 (2001.9.25)		バルバドス国 セントマイケル ベイトリート ブッシュ ヒル ザ コーポレイト センター
(35) 離脱文提出日	平成14年5月27日 (2002.5.27)	(74) 代理人	100077517 弁理士 石田 敬
(36) 国際出願番号	PCT/US2001/042272		100082624 弁理士 石田 準一
(37) 国際公開番号	W02002/039903		100082898 弁理士 西山 雅也
(87) 国際公開日	平成14年5月23日 (2002.5.23)		100081330 弁理士 横口 外治
(31) 優先権主張番号	60/234,931		最終頁に続く
(32) 優先日	平成12年9月26日 (2000.9.26)		
(33) 優先権主張国	米国(US)		

(54) 【発明の名称】外科用器具のためのハンドルアセンブリ及びアセンブリの製造方法